Reduced-quaternion inframonogenic functions on the ball

 

Resumen

A function from a domain in to the quaternions is said to be inframonogenic if
, where
. All inframonogenic functions are biharmonic. In the context of functions taking values in the reduced quaternions, we show that the inframonogenic homogeneous polynomials of degree form a subspace of dimension . We use the homogeneous polynomials to construct an explicit, computable orthogonal basis for the Hilbert space of square-integrable inframonogenic functions defined in the ball in .

 

Autores

  • C. Álvarez-Peña
  • J. Morais
  • R. Michael Porter

 

Revista Math. Meth. Appl. Sci.

https://doi.org/10.1002/mma.9600

Print
CONTÁCTENOS

Logo Cinvestav

Av. Instituto Politécnico Nacional 2508,
Col. San Pedro Zacatenco,
Alcaldía Gustavo A. Madero,
Ciudad de México, Código Postal 07360

Tel. +52 55 5747 3800

Cinvestav © 2024
27/09/2024 01:56:53 p. m.