Low-Cost and Biodegradable Thermoelectric Devices Based on van der Waals Semiconductors on Paper Substrates
Resumen:
We present a method to fabricate handcrafted thermoelectric devices on standard office paper substrates. The devices are based on thin films of WS2, Te, and BP (P-type semiconductors) and TiS3 and TiS2 (N-type semiconductors), deposited by simply rubbing powder of these materials against paper. The thermoelectric properties of these semiconducting films revealed maximum Seebeck coefficients of (+1.32 ± 0.27) mV K−1 and (−0.82 ± 0.15) mV K−1 for WS2 and TiS3, respectively. Additionally, Peltier elements were fabricated by interconnecting the P- and N-type films with graphite electrodes. A thermopower value up to 6.11 mV K−1 was obtained when the Peltier element were constructed with three junctions. The findings of this work show proof-of-concept devices to illustrate the potential application of semiconducting van der Waals materials in future thermoelectric power generation as well as temperature sensing for low-cost disposable electronic devices.
Autores:
https://doi.org/10.1002/eem2.12488